Search results

Search for "solid oxide fuel cell" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • permeation membrane, as oxygen sensor material, or for the use in solid oxide fuel cell components [1][5][6]. Apart from this, ceria is also widely employed as a catalyst in the middle- to low-temperature regime (20–400 °C) [7][8][9], making ceria-based dual-phase materials with a second electron-conductive
PDF
Album
Full Research Paper
Published 15 Dec 2021

Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

  • Sanghoon Ji,
  • Waqas Hassan Tanveer,
  • Wonjong Yu,
  • Sungmin Kang,
  • Gu Young Cho,
  • Sung Han Kim,
  • Jihwan An and
  • Suk Won Cha

Beilstein J. Nanotechnol. 2015, 6, 1805–1810, doi:10.3762/bjnano.6.184

Graphical Abstract
  • density than the thinner BEC cell at 500 °C. Keywords: anodic aluminum oxide; atomic layer deposition; bottom electrode catalyst; mass transport; solid oxide fuel cell; Introduction Recently solid oxide fuel cells with thin film ceramic electrolytes, called thin film solid oxide fuel cells (TF-SOFCs
PDF
Album
Full Research Paper
Published 27 Aug 2015

Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance

  • Chieh-Chun Wu,
  • Ling Tang and
  • Mark R. De Guire

Beilstein J. Nanotechnol. 2014, 5, 1712–1724, doi:10.3762/bjnano.5.181

Graphical Abstract
PDF
Album
Full Research Paper
Published 06 Oct 2014

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
  • electrodes [3]. In a solid oxide fuel cell (SOFC) the electrolyte conducting the negative oxygen ions (Figure 1c) is usually a rare-earth metal oxide doped zirconia, e.g., yttria stabilized zirconia (YSZ) or ceria that operates at high temperature (700–1000 °C). Liquid fuels may be used directly in SOFCs
PDF
Album
Review
Published 29 Aug 2014
Other Beilstein-Institut Open Science Activities